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I. Introduction

The Modal Superposition Method is a useful algorithm for the

solution of linear problems in structural dynamics. The basic idea of

the method is to transform the coupled equations of motion into an

uncoupled form. This change of basis is equivalent to diagonalization

of the underlying matrix differential equation, and has the effect of

trading one complicated n-dimensional system of ODE for n simple

(scalar) ODE. Typically, this change of basis to modal coordinates is

very efficient computationally, and linear problems are generally

solved in this manner. Often, not all the modes participate in the

solution, and so the problem may be projected onto a smaller subspace,

with a corresponding decrease in computational cost.

The principle of superposition does not apply to nonlinear

problems, so Modal Superposition is not strictly valid in a nonlinear

setting. The method can be extended to this more difficult case by

considering the linearization of the nonlinear problem in a local

region. This linearized problem can be used to generate modal

coordinates, and these modes can be used as generalized coordinates in

the solution of the nonlinear problem. The presence of nonlinearities

has the effect of introducing coupling among the modal equations of

motion but the reduction in size of the problem obtained by projection

to a smaller modal basis typically justifies the increased cost due to

this coupling. In addition, the knowledge that off-diagonal terms

will exist in the modal problem means that the exact modes (the ones

that diagonalize the linearized problem) need not be found: an

approximation will do, since the effect of the error is to add

4 1
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off-diagonal terms to the (already coupled) modal problem.

The scope of this report is to propose a general algorithm for the

solution of a class of nonlinear problems in structural dynamics using

a modal representation. The development of some of the underlying

linear theory will be presented, followed by generalizations to

nonlinear problems. These topics will be used to develop an algorithm

for the nonlinear case, and several one-dimensional examples will be

presented. This research is a starting point in an attempt to produce

an adaptive algorithm for the solution of nonlinear problems, and so a

number of topics for further development will be presented.

It is assumed that the reader has. a basic knowledge of structural

dynamics, finite element methods, and matrix spectral theory.

Sufficient detail on these topics can be found in references [1], [2],

and £3].

Some consideration of semantics should be noted: in the following

development, a *mode* is taken to be a generalized coordinate vector

that reflects some aspect of the vibrational behavior of the

structure, but not necessarily an exact eigenvector of the

mathematical model. (This is an ambiguous definition, but the word

"mode" is considerably more imprecise than eigenvectorg, with which

it is often taken to be synonymous.) Different modes are taken to

* satisfy some type of orthogonality requirement (usually with respect

to the finite element mass matrix), and to have unit length in some

appropriate norm, but they do not have to produce a diagonal form of

the equations of motions, as in linear theory. This convention is

merely for the convenience of lumping classes of generalized

S'"iIS41 li'i'iiiI'il
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coordinates into the term "mode*, instead of referring to *exact

eigenvector*, Ritz vectors, Lanozos approximations to eigenvectors',

etc.

Finally, all important symbols are tabulated in Appendix 1.

II. Linear Modal Analysis

The equations of motion for a linear-elastic structure are a set of

partial differential equations involving both spatial and temporal

derivatives. These PDE can be cast in a semi-analytic form by

performing a finite element discretization in the space domain. This

process turns the spatial differential terms into an algebraic set of

equations. The time derivatives are left in continuous form, and the

resulting system of ordinary differential equations dan be written for

an undamped system as:

Kx + Mi = f Eqn 1

where K and M are the finite element stiffness and mass matrices, x is

*the vector of nodal displacements, add f is a load vector which is a

function of time. The modal coordinates of this system can be found

by solving the generalized eigenvalue problem:

(K - w2H)u z 0 Eqn 2

0
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The pair (K,H) is termed a matrix pencil (this term arises trom the

study of geometric optics). In general, K and M are positive-definite

matrices, and so the eigenvalues w2 are real and positive. Under

these conditions, a complete set of eigenvectors exists that are

orthonormal with respect to the mass matrix:

U = Ul, u2, ... un ]  Eqn 3

UTU I UTKU a D z dag(w2 )

The change of basis to modal coordinates z is given by

UX a x Eqn 4

In this coordinate system, the ODE are uncoupledo, so tha 1a-

21
2

1  Z =U1 Tf £qn 5

These equations can easily be integrated to give the modal

coordinates z, which are then transformed using Eqn 4 to give the

desired solution. Any numerical integration scheme appropriate for a

single-degree-of-freedom system, such as the Duhamel Integral (see

[1], pg 100-108) can be used to solve the modal equations.

0

--_0
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In practice, the solution of linear problems generally includes a

dmping term Ci to account for energy loss in the structure. In order

to diagonalize K, C, and M simultaneously, the damping matrix C is

generally taken to be some combination of powers of K and M. (In many

nonlinear problems, which are the ultimate scope of this research, the

stiffness K(x,t) typically includes nonconservative terms, and so the

construction of a damping matrix is not considered further.) The

presence of damping in a linear system causes the transient

free-vibration response of the system (corresponding to the homogenous

solution of Eqn 1) to decay, leaving the steady-state forced response

induced by the load f (the nonhomogenou3 solution of Eqn 1). In the

following discussion, the *response" of the structure is taken to be

the steady-state response.

The loading term uTf represents a generalized load acting on the

ith modal coordinate. If uj and f are nearly orthogonal, then this

load is small relative to other generalized modal loads. In this

case, the ith mode does not appreciably participate in the solution,

and can be neglected in the analysis. Typically, in the modelling of

a complex structure, most modes do not participate, and thus a reduced

problem can be solved by projecting the solution onto a p-dimensional

subspace spanned by the p 'most important" modes:

x a Upz Eqn 6

In this case, the columns of Up (an nxp matrix) are the p dominant

orthonormal modes, 'nd z (a pxl vector) is the reduced set of modal

coordinates. It is important to observe that U Up - 1p, the identity
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matrix for p-dimensional space, but that UU T 0 IunlessP-n. In

spite of this last fact, Up is still often termed an orthogonal

matrix, and this terminology will be used herein.

The load vector f can be decomposed into orthogonal components

f z g + h where g lies in the column space (or range) of Up, and

gTh z 0. The vectors g and h are defined by projecting f onto the

range of Up:

g - UpUTf h - (I - UpUT)f Eqn 7

The Pythagorean theorem implies that gTg + hTh = fTf (i.e.

29112+ ,ihi2 = If 12z so that it is to be hoped that gTg >> hTh in

order that the reduced set of coordinates gives a good approximation

to the load. Finally, in preparation for subsequent development, it

should be noted that the projection defined by Eqns 6 and 7 is valid

for any matrix Up with orthonormal columns, but that the particular Up

formed using the eigenvectors of the pencil (K, H) iliagonalizes the

linear problem.

Once the important modes of the linear problem have been found, the

scalar ODE of Eqn 5 can be integrated to give the solution. A problem

occurs when the time scales defined by the modal frequencies wl span

several orders of magnitude:

ma(w 1 ) >> min(wi)

In this oase, any step size appropriate for numerical integration of a
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"fast* problem (max(wi)) will be too small for efficient integrationI

of a "slow" problem (min(wi)), and a step size appropriate for a slow

problem is inaccurate for a fast one. If the load function f defines

another time scale (i.e. the duration or the rapid variation of an

earthquake record), then the situation is even more complicated. In

any case, a wide range of time scales exists in the problem, and any

computational scheme must accomodate this difficulty. Differential

equations characterized by this range of scales are referred to as

stiff: in this case, the stiffness is inherent in the spread of the

2eigenvalues w, of the pencil (K,M). In a linear modal analysis, the

stiff nature of the equations requires selection of an appropriate

step size for integration of the modal equations: since these

equations are uncoupled, these step sizes may be chosen indipendently.

An algorithm that does not completely decouple the modes may require

short steps for a slow mode if it remains coupled to a faster one.

Thus, there is strong incentive to diagonalize (or nearly-diagonalize)

any linear problem, except in very special circumstances (such as an

extremely short-duration loading and response, where the cost of

finding the modes cannot be amortized over sufficient time steps to

remain competitive).

Two algorithms for generation and solution of reduced equations for

linear problems have appeared recently in the literature. Although

these algorithms are motivated from different basic principles, in

fact they are closely related. Each represents an efficient

alternative to solution of the problem using exact eigenvectors.

SW

S
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The first approach is due to Wilson, et. al. [4][5], who suggests

using so-called "Ritz vectors" to achieve a reduced set of

coordinates. The identification of these Ritz vectors proceeds from a

physical argument involving the solution of a static problem, followed

by corrections accounting for dynamic terms missed in previous steps.

(The reader is referred to [4] for the details. The following summary

involves some notational changes from this original reference.) In

summary, the Ritz vectors qi are obtained using the recurrence:

1) Kx1 = f (f = equivalent static load)

2) q, = xi/(xTJlxi)

3) For i = 2 to p

3a) Kxi = Mxi.1

3b) Yi = xj -ji.(qT'xi)qj

3c q Z Yi /(YTMY )

The nxp matrix Qp = [qlq 2 1 ... Iqp] is (in the absence of

round-off error) an orthogonal matrix. In practice, step 3b of the

algorithm is badly affected by round-off error in a low-precision

computational environment, and needs to be replaced with a more robust

orthogonalization scheme (such as the one found in [3], pg 105-110),

in order to achieve orthogonality of the columns of Qp to working

precision. If enough vectors are included in Qp, these reduced

coordinates give excellent results: in the example problems studied

in [41, this algorithm was clearly superior to the use of exact

eigenvectors. The authors suggest that further savings could be

LA
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realized by diagonalizing the reduced stiffness TQKQp before numerical

integration is performed. Since p << n, this last step is very

inexpensive.

Examination of this algorithm reveals that the Ritz vectors are

chosen to be an orthonormal basis for the space spanned by the set

SK4f, (rt M)r 1f, (K4M)2K-1f, ... , (r1M)P'Klf). (This subspace is

termed the Krylov subspace of order p, generated by the matrix KCM and

the vector I1f: reference [3] contains several excellent chapters on

the utility of these Krylov subspaces.) The algorithm of references

[4] and [5] therefore generate these Ritz vectors by direct

calculation of an orthonormal basis for this subspace, with full

orthogonalization (step 3b) at each step.

The second approach for generation of a reduced problem is due to

Nour-Omid and Clough [6]. This method uses the Lanczos Algorithm

(refer to [31 or to [7] for a detailed derivation) to generate Lanczos

vectors: tnese vectors define the reduced coordinate set for the

problem. The Lanczos Algorithm involves the use of a three-term

recurrence to generate an orthonormal basis for the Krylov subspace

mentioned in the last paragraph. This recurrence (even after

modifications are made to reduce the effect of round-off error) is

considerably less expensive than the orthogonalization scheme used in

CUBJ5], and results in a tridiagonal form for the equations of motion.

The resulting reduced problem can easily be diagonalized, or a

tridiagonal formulation for the numerical integration of the equations

of motion can be used. In either case, the computational cost is much

less than any method for solving the full (unreduced) problem.
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III. Nonlinear Modal Analysis

A common class of nonlinear problems in structural dynamics occurs

when the stiffness and/or mass matrices are functions of the

displacement x (or its temporal derivatives). In this case, the

equilibrium equations given by Eqn 1 become:

K(x,x t)x + M(xixt)i = f(x,x,xt) Eqn 8

The most typical example of this class of problems is considerably

0 simpler:

K(x,t)x + Mi = f(x,t) Eqn 9

In this case, the mass matrix is constant, and the stiffness and force

depend only on x and t. The following development assumes that the

nonlinearities can be cast in the form of Eqn 9: the more general

case given by Eqn 8 can be analyzed in a similar manner.

For a given configuration xO = x(to), the pencil (K(xo,tO) M) can

be used to generate a set of modes. These modes could be the exact

eigenvectors that diagonalize this pencil or, as in the last section,

could be Lanozos vectors that tridiagonalize MK1 . Since the problem

is nonlinear, it is not expected that this diagonal (or tridiagonal)

structure will be preserved for x # xO . (To be more precise, the

nonlinear problem can be linearized at xo, and a set of reduced modal

coordinates extracted.)
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The primary questions in such a local reduction are the number of

reduced coordinates required to gain an acceptable approximation in a

region near xo, and the size of the region over which the

approximation is valid. Assuming that a representative load vector

(or some generalization of a participation factor) can be found, the

methodology of references [4), [5], and [6) can be used to determine

the number of coordinates required at xO . The magnitudes of the

projected load and the error involved in this projection can be

monitored to insure that enough modes have been included to maintain

accuracy. Some measure of off-diagonal strength in the reduced

equations, such as

(where ri| is an element of the reduced stiffness) "can be used to

determine whether the modal coupling is too strong (as in solving

stiff problems). All these topics are currently being studied, and

the results will be presented in future publications.

For some problems (see reference [8] and the examples presented in

the following sections), good results have been obtained by taking x0

and to to be zero (i.e., using the initial configuration to generate

mode shapes) and applying these same reduced coordinates throughout

the entire nonlinear problem. On the other hand, when the

nonlinearities involve large inelastic effects, it is expected that

the modes of vibration will need to be updated at some stages of the

solution process.
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IV. Proposed Algorithm for Reduced Coordinate Analysis
-------------- ------------------------- ---------- -

Using the direct integration of the equations of motion as a model,

and including some scheme (such as those just presented) to generate a

set of reduced coordinates, the following skeletal algorithm is

presented as an outline of a general solution scheme for nonlinear

problems of the form given in Eqn 9:

1) Initialize:

la) set initial conditions on x, i, t, f

Ib) calculate initial values of K, i, M

*c) evaluate mode shapes Qp

2) For t t o to t = t.max

2a) update modes, if necessary

2b) form reduced problem Rz + - z g

2c) integrate reduced problem to end of time step

2d) if equilibrium satisfied then done with step

else apply iteration strategy and repeat from (2b) or (2a)

This algorithm is intentionally nebulous, since the development of

this scheme is still proceeding. As mentioned in the last section,

the question of when to update the modes is the subject of present

*) research.

0
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V. Computational Costs of Reduced Algorithm

In order to solve the equations of motion (either full or reduced),

some numerical integration scheme such as Newmark's Method (see E9])

is generally employed. For the full (unreduced) set of coordinates,

the stiffness matrix must be factored at each time step: this

operation is of the order neb2, where n is the number of equations and

b is an average bandwidth of the stiffness matrix. For a reduced

coordinate system, the stiffness matrix must be factored each time the

coordinates are updated, but it is assumed that this occurs

infrequently, compared to the number of time steps. The reduced

4 stiffness has to be factored at each time step: this requires on the

order of p3 operations, where p is the number of reduced coordinates.

Formation of the reduced stiffness using the least efficient means

(i.e., forming the unreduced stiffness and pre- and post-multiplying

by the orthogonal modal matrix) requires on the order of n*bfp

operations. Therefore, the most inefficient reduced formulation will

require on the order of nebep + p3 operations. If p is much less than

b (which is typical of large problems, but definitely not the case for

the one-dimensional examples presented below), then the reduced

algorithm will be competitive with direct integration. If measures

are taken to improve the computational efficiency of the reduced

algorithm (see [101 for one example), these asymptotic operation

counts for reduced analyses should improve relative to the direct

formulation.
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When iteration within each time step is considered, the comparison

of computational cost is less clear. At this stage of the research,

it is premature to draw conclusions as to whether the reduction of

coordinates enhances or retards convergence of a given iteration

scheme. Development of a robust reduced iteration scheme for

satisfaction of the equations of equilibrium at the end of each time

step is presently one of the main topics of study by the authors. The

small order of the reduced equations makes certain iteration schemes

(such as those in the Newton family) more feasible.

* VI. Example Problems

Several one-dimensional problems are analyzed in order to calibrate

and test the reduced coordinate models. For each test problem, three

types of analysis are performed:

1) Direct integration of the equations of motion

2) Integration of the reduced system,

using exact eigenvectors for reduction

3) Integration of the reduced system,

using Lanczos vectors for reduction

* In the second and third cases, the reduced coordinate algorithm

presented in Section IV is used. In all cases, the equations of

motion are numerically integrated using Newmark's Method (see [9]),

* with integration parameters:
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alpha a 1/4

delta = 1/2

The first example, used for calibration purposes, is that of free

vibration of a linear string. The assumption of a linear displacement

field over each element leads to an initial value problem in the form

of Eqn 1, with a mass matrix equal to the identity, and a tridiagonal

stiffness matrix:

K a tridiag(-1, 2, -1)

The tridiagonal stiffness is equal to the so-called Jacobi matrix:

the eigensystem of this matrix is known in closed form, so an exact

solution is available for comparison. The number of equations chosen

for. this problem is fifty. The fundamental period of this system is

approximately 102, and the numerical schemes were integrated from

t z 0 to t z 102, using time steps of unit length.

The first ten mode shapes are shown in Figures 1 and 2. Both sets

of modes were obtained from the Lanczos algorithm: the exact

eigenvectors can be obtained by finding the eigensystem of the

tridiagonal matrix that gives the three-term recurrence used by the

Lanczos scheme. Typically, in order to calculate p eigenvectors, more

than p steps of the recurrence must be taken, so finding eigenvectors

S using the Lanczos method is always more expensive than finding an

equal number of Lanozos vectors. A vector with each component set

equal to unity was used to start the algorithm. Note that

- antisymetric modes appear in both cases. Since the stiffness and

mass are peraymmetrio (symmetrio about both diagonals), if a symmetric

S3
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starting vector is used to generate modes, in the absence of round-off

error, only symmetric modes would be produced. Obviously, one effect

of round-off error is to include antisymmetric modes that do not

participate in the solution.

Because the problem is one-dimensional, the history of the

displacement can be visualized in three dimensions: space, time and

displacement. Figure 3 shows the solution domain in the space-time

plane, and the viewpoint for display of the displacement history. One

of the main reasons for choosing one-dimensional problems for test

purposes (other than low computational cost) is that the entire

0 history of the problem can be summarized in the display of

displacement as a function of space and time.

Figures 4 thru 7 display displacement histories for the various

methods: exact solution, direct integration, eigenvectors for reduced

coordinates, and Lanczos vectors for reduced coordinates. Figures 8

and 9 show the displacement errors for the three numerical integration

schemes, including results using six and ten reduced coordinates.

These errors are tabulated in Table 1, along with estimates of

computational costs. Note that since the problem is tridiagonal, the

reduced algorithm is placed at a serious disadvantage, for the reasons

given in the section on computational costs. This disadvantage should

be reversed for two and three-dimensional problems.

The second problem considered is the forced vibration of a

nonlinear string. In this oase, the exact solution is chosen to be a

product of a spatial term and a temporal factor:
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x, x (i/(n1)]esin(t) for i <= (n+1)/2

x, a [(n-i)/(n+l)]esin(t) for ± > (n 1)/2

This displacement pattern is a symmetric bilinear function of the

spatial coordinate, with zero displacement at the ends of the string,

and a maximum value of 1/2 at the center of the string. Again, the

string was subdivided into fifty point masses, and six modes were used

in the reduced algorithms.

The nonlinearity present in this problem is a simple quadratic

nonlinearity on the diagonal of the stiffness matrix:

K tridiag(-1, 20(1+xf), -1)

Given this construction of the exact solution, the accuracy of the

numerical schemes can be evaluated. The analysis was performed with

three different time steps, and the errors are presented in Table 2.

Displacement errors associated with the shortest time steps are

displayed in Figure 10. Note that the most serious errors are present

at the center of the string: this is due to the *kink* in the exact

solution at the this point. This disturbance propagates along the

characteristics in the fully continuous problem, but is "washed-out"

by a numerical procedure (such as those used in this example) that

0ignores the presence of characteristic curves. (This phenomenon is

similar to what occurs when attempting to solve hyperbolic partial

differential equations using finite-difference methods.) Away from the

center of the string, the solutions are quite accurate.
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A simple nonlinear correction scheme of subtracting the residual at

the Ith step from the load vector applied at the (W 1)st step was used

with considerable success in this problem. Further Iteration within

the time step decreased the error for the direct method (refer to

Table 2), but did not improve the reduced algorithms.

The last example presented is the problem of free vibration of a

nonlinear string. The initial conditions are the same as in the last

problem, but the nonlinearity is weaker:

K a tridiag(-1, 2+ 2 , -1)

The results Of the three integration schemes are shown in Figures

11, 12 and 13. Maximum values of the displacement, velocity, and

acceleration are given in Table 3, along with more refined values

obtained by direct Integration using a small time step (At 2 0.01).

VII. Conclusions and Recommendations for Further Study

This research is intended only as a first step towards a general

algorithm for the solution of time-dependent nonlinear problems of the

* Oform given by Eqn 9. Considerable work needs to be done in a variety

of areas in order to achieve a robust, efficient alternative to the

direct integration of the full equations of motion. The example

problems presented are limited in scope and geometry, and a number of

two and three-dimensional problems involving nonlinear geometric
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and/or material behavior are being considered. These more realistic

problems, and the topics considered next, form the outline of the

Ph.D. research of the first author.

There are four areas in which further research and development is

presently being concentrated:

1) Development of efficient and reliable iteration schemes

The numerical integration of the nonlinear equations of motion

across a time step is equivalent to the solution of a system of

nonlinear equilibrium equations at the end of the time step. This

solution is obtained using some sort of iteration strategy, involving

formation of the equations of motion at the end of the step, and

checking for a residual error. Because one of the most expensive

operations involved in the proposed algorithm is the formation of the

reduced stiffness at each iteration, the number of iterations required

to satisfy the equilibrium equations must be kept to a minimum in

order to achieve the highest computational efficiency. This requires

that the iteration scheme have rapid convergence characteristics.

Present research is being focused on the Newton family of methods as

an alternative to a iterative application of Newmark's Method.

Particular attention will be given to the use of the algorithm with

comprehensive material inelasticity models, such as the bounding

surface model for soils [11]. Means will be sought for combining the

inherent need of such models for iteration and integration across a

given time step with the Iteration requirement of the dynamic

analysis.

0%
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2) Increased efficiency in formation of reduced problem

The limiting factor in the present implementation of the reduced

algorithm is the process of forming the reduced matrices. There are a

number of avenues open for refinement of this process, including an

asymptotic approach (see [10]), the construction of the reduced

matrices at the element level, and the use of parallel processing.

Progress on this topic, coupled with an efficient iteration scheme as

mentioned in the last section, would greatly speed the proposed

algorithm.

3) Adaptive determination of number of modes required

The appropriate number of modes required for an acceptable solution

may not be apparent to the analyst either before or during the

solution process. In addition, the determination of whether the

reduced coordinates need to be updated must be automated, in order to

be able to use the proposed algorithm in any way resembling the use of

a 'black box'. Both these issues need to be addressed before the

reduced algorithm can compete with direct integration schemes, and

both require further research into the effect of projection error in

the reduction process.

4) Modifications for stiff (i.e. soil-structure) systems
0

Preliminary results from this research indicate considerable

promise for the reduced algorithm for solving certain stiff problems.

In particular, soil-structure interaction problems are characterized

by such a wide range of frequencies that a representative time scale
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for the analysis of the coupling between the soil and structural

components is difficult or impossible to find. One promising

possibility would involve projecting the soil-structure problem onto

the soil deformation modes that impart energy to the structure, and

the lowest modes of vibration of the structure itself. The Lanczos

algorithm has been used by the authors with an origin shift to obtain

reduced coordinates for such problems, and work is underway on

incorporating these coordinates into the proposed algorithm.

In conclusion, the use of a reduced set of modal coordinates offers

an alternative to direct integration of the full equations of motion.

The research presented in this work represents a first step towards an

efficient implementation of this reduction for a variety of nonlinear

problems.

0

0
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Appendix 1: Table of Symbols

Symbol Definition

b Average bandwidth of stiffness matrix

D Diagonal matrix of squared frequencies

f Finite element load vector

g Reduced load vector

h Component of f orthogonal to g

K Finite element stiffness matrix

H MFinite element mass matrix

a Number of equilibrium equations

p Number of reduced coordinates

qi Individual trial mode shape

Qp Orthogonal matrix of trial mode shapes

R Reduced stiffness matrix

t time variable

Up Orthogonal matrix of exact eigenvectors

wi Modal natural frequency

x Vector of nodal displacements

Vector of nodal velocities

xVector of nodal accelerations

z Vector of reduced coordinates

_i Vector of reduced accelerations

*T

- r)



Table 1: Errors in Solution of Linear Free Vibration Problem

Type of Maximum Absolute Errors Cost
Analysis Displacement Velocity Acceleration (cpu-sec)
---- ---------------------------------------------------------------------------

Direct integration 0.0424 0.0203 0.0139 9.53

6 Eigenvectors 0.0433 0.0173 0.0126 35.70

10 Eigenvectors 0.0426 0.0210 0.0145 80.70

6 Lanozos vectors 0.0413 0.0202 0.0137 32.63

10 Lanazos vectors 0.0465 0.0169 0.0118 77.14

Table 2: Errors in Solution of Nonlinear Forced Vibration Problem
---- --------------------------- --------------------------------------

Type of Maximum Absolute Errors Cost
* Analysis Displacement Velocity Acceleration (cpu-sec)

---- --------------------------------------------------------------------------

Direct, 128 steps 0.0655 0.0860 0.1092 18.71
Direct, 64 steps 0.1014 0.1411 0.1894 9.85
Direct, 32 steps 0.2101 0.1749 0.1837 5.57

Direct w/ iteration,128 steps 0.0098 0.0107 0.0128 25.74
Direct w/ iteration, 64 steps 0.0253 0.0277 0.0321 13.59
Direct w/ iteration, 32 steps 0.0942 0.0964 0.1083 7.90

6 Eigenvec., 128 steps 0.0440 0.0434 0.0698 65.61
6 Eigenvec., 64 steps 0.0751 0.0673 0.1243 34.71
6 Eigenvec., 32 steps 0.2016 0.1975 0.1936 19.62

6 Lanczos vea., 128 steps 0.0371 0.0313 0.0542 63.42
6 Lanczos vec., 128 steps 0.0644 0.0657 0.0961 31.97
6 Lanozos Vea., 128 steps 0.2306 0.2015 0.2049 16.82

S.

Table 3: Approximate Solution ot Nonlinear Free Vibration Problem
---------------------------------------------------------------------

Type of Maximum Absolute Response Cost
Analysis Displacement Velocity Acceleration (cpu-sec)

Direct integration 0.8440 0.5135 0.5982 12.94

* Direct w/ small step 0.8177 0.4902 0.5521 81.21

6 Eigenveators 0.8572 0.5601 0.6674 60.41

6 Lanczos vectors 0.8650 0.5651 0.6762 57.79

(All computation times are for a VAX 11/750 with floating-point hardware)
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Figure 4i

Exact solution history
for the linear

free-vibration problem

(a) Exact displacement

mmiaw absolute displacewt 6.371

(b) Exact velocity

nwiwm absolute velocit 3 0 .492

(a) Exact acceleration

mima absolute amcleration 0 .020



Figure5

Numerical solution history
for the linear

free-vibration problem
(Direct integration)

(a) Approximate diaplacement

swi.. absolute displeeast 6.370

(b) Approximate velocity

omim absolut 0. Met .S

(0) Approximate acceleration

umimnm absolute acwtw: 0.OMS



Figure 6

Numerical solution history
for the linear

free-vibration problem
(6 Zigenvectors)

(a) Approximate displacement

muiIIImuII absolute displacumnt 6M37

(b) 1pproximate velocity

miim absolute yueciij 0 .4912

(a) Approximate acceleration

miim absolute amcleration: 0.02606

I'S~ III



Figure 7

Numerical solution history
for the linear

free-vibration problem
(6 Lanozos vectors)

(a) Approximate displacement

%wiim absolute displactont 9 .3n0

()Approximate velocity

wiimpm absolute v ct 0.4902

(a) Approximate acceleration

umIam absolute hsclesttmn: 0.02473



Figure 8

Displacement errors
for the linear

free-vibration problem

(a) Direct integration

mixim absolute displacumnt 0 .0423B

(b) 6 Eigenvectorg

mam absolute displaunt M! O.04=2

(a) 6 Lanozse Vectors

mini. dooo1Ste dksplac~mt 0.0413



Figure 9

Displacement errors
for the linear

free-vibration problem

(a) Direct integration

maxima absolute displacmmt :0.0423B

(b) 10 SigenVeotors

mxiwA. almolute dispiacuun -1 0.04266

(a) 10 Lanozos Vectors

mlxma absolute diupimauamt 0.04



Figure 10

Displacement errors
for the nonlinear

forced vibration problem
(example 2)

(a) Direct integration

uimm absolute daSPlaCusWi OM

(b) 6 Eigenvector3

minm' absolute dilp-mmn : 0.044M3

(a) 6 Lanozos Vectors

min' abolt -wola~snt I0.03MC



Figure 11

Numerical solution history
for the nonlinear

free-vibration problem
(Direct integration)

(a) Approximate di3Placement

Pwaua absolute displawin : .944

(b) Approximate velocity

amino absolute ValocitV 0.5135

(o) Approximate acceleration

waimA ams ute afteleration :o.uea



Figure 12

Numerical solution history
for the nonlinear

free-vibration problem
(6 Eigenvectors)

(a) Approximate displacement

maximun absolute diuplacowmn : .S72

(b). Approximate velocity

Miu absolute VulocitV : 0.6601

(a) Approximate acceleration

min au bw ue amclhlat ion : 0.6674



Figure 13

Numerical solution history
for the nonlinear

free-vibration problem
(6 Lanczos vectors)

(a) Approximate displacement

Nwim *bSolute displacsumn : .O65

(b) -Approximate velocity

wi1mm absolute vulocitV 0.5651

(a) Approximate acceleration

Muinx1 bMo ute -Weluyation : 0076
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